Sistema Decimal Base 10 & Sistema Binario Base 2
En este nuevo blog, les hablare de los sistemas decimales y binarios, espero que sea útil la información.
Sistema Decimal Base 10:
El sistema de numeración decimal, también llamado sistema decimal, es un sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez. Esta se compone de diez cifras diferentes: cero (0); uno (1); dos (2); tres (3); cuatro (4); cinco (5); seis (6); siete (7); ocho (8) y nueve (9).
El sistema numérico frecuente mente mas usado es el de Base 10 y se le llama así a que utiliza diez símbolos, y combinaciones de estos símbolos, para
representar todos los números posibles. En Un sistema numérico decimal que se basa en potencias de 10 cada símbolo o
dígito representa el número 10 elevado a una potencia
siendo este el exponente, de acuerdo con su posición se multiplica por el número que posee
esa posición. Al leer un número decimal de
derecha a izquierda, la primera posición representa 100 (1), la segunda
posición representa 101 (10 x 1= 10), la tercera posición representa 102 (10 x
10 x 1=100), 106 (10 x 10 x 10 x 10 x 10 x 10 x 1=1.000.000)
Por ejemplo:
2134 = (2x103)
+ (1x102) + (3x101) + (4x100)
Hay un 2 en la posición correspondiente a los miles, un 1 en la posición
de las centenas, un 3 en la posición de las decenas y un 4 en la posición de
las unidades.
Mas detallitos:
541 000 = 5.41 x 10*5
1000 000 = 10*6
400 000 = 4 x 10*5
10 significa 1x10
128 significa 1x10^2+2x10+8
3000 significa 3x10^3
¿Cómo convertir un número decimal a un numero binario?
Así de esta manera, dividiendo siempre entre 2 y al finalizar para obtener el numero binario, escriba los residuos de las operaciones de abajo así arriba, quedando de esta manera
Sistema Binario en base a 2
El sistema binario, en matematicas e informática, es un sistema de numeracion en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Este lo utiliza en las computadoras, debido a que trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario con su signifcado que 1 lo mantiene encendido y el 0 es apagado.
Se le conoce tambien como un sistema posicional ya que un mismo digito representa un valor distinto de acuerdo a su posición de derecha a izquierda.
Convertir de binario a decimal:
aqui te enseñaremos una forma simple de como convertir de binario a decimal :)
El numero (1101)2, recuerda queestamos empezando por la derecha.
El primer 1 representa una unidad; el 0 representa 0 gruposde 2 unidades; el siguiente uno representa 1 grupo de 4 unidades; el ultimo 1representa 1 grupo de 8 unidades; por lo que en decimal seria igual a 8 + 4 + 0+ 1 = 13.
porque? presta atencion
datito importante: Al usar esta tabla se te hara mas facil convertirlo
Para convertir el numero (11101) a decimal, nosfijamos en los renglones 1, 3, 4, 5 de la tabla, la posición 2 no setoma en cuenta debido a que hay un 0 en el numero vinario, solo se toman las unidades en donde estén 1 del numero binario.
Luego sumamos las unidades correspondientes a su dicha posicion 16 + 8 + 4 + 1 = 29
y listo una manera facil y sencilla